AG真人百家乐官方网站

Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • AG真人百家乐官方网站 Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups (TWGs)
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    AG真人百家乐官方网站 Us

  • Data & Samples
    • Data Portal
      • Spatial Data & Maps
    • Data Themes
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • AG真人百家乐官方网站 Field Sites and Domains
    • Explore Field Sites

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

Learning Hub

  • Science Videos
  • Tutorials
  • Workshops & Courses
  • Teaching Modules

Breadcrumb

  1. Resources
  2. Learning Hub
  3. Tutorials
  4. Git 05: Git Add Changes - Commit

Tutorial

Git 05: Git Add Changes - Commit

Authors: Megan A. Jones

Last Updated: Apr 8, 2021

This tutorial reviews how to add and commit changes to a Git repo.

## Learning Objectives At the end of this activity, you will be able to:
  • Add new files or changes to existing files to your repo.
  • Document changes using the commit command with a message describing what has changed.
  • Describe the difference between git add and git commit.
  • Sync changes to your local repository with the repostored on GitHub.com.
  • Use and interpret the output from the following commands:
    • git status
    • git add
    • git commit
    • git push

Additional Resources

  • -- this diagram includes more commands than we will learn in this series but includes all that we use for our standard workflow.
  • -- we do not focus on the use of branches in Git or GitHub, however, if you want more information on this structure, this Git documentation may be of use.

In the previous lesson, we created a markdown (.md) file in our forked version of the DI-NEON-participants central repo. In order for Git to recognize this new file and track it, we need to:

  1. Add the file to the repository using git add.
  2. Commit the file to the repository as a set of changes to the repo (in this case, a new document with some text content) using git commit.
  3. Push or sync the changes we've made locally with our forked repo hosted on github.com using git push.
Graphic showing distributed version control workflow. After the repository has been cloned to your local computeryou can work on any file in the repository. You can use git pull to pull changes in your fork on github.com to your computer to ensure both repositories are in sync. Edits to the file on your computer will not be recognized by Git until you add and commit them as tracked changes in your repository.
After a Git repo has been cloned locally, you can now work on any file in the repo. You use git pull to pull changes in your fork on github.com down to your computer to ensure both repos are in sync. Edits to a file on your computer are not recognized by Git until you "add" and "commit" them as tracked changes in your repo. Source: National Ecological Observatory Network (NEON)

Check Repository Status -- git status

Let's first run through some basic commands to get going with Git at the command line. First, it's always a good idea to check the status of your repository. This allows us to see any changes that have occurred.

Do the following:

  1. Open bash if it's not already open.
  2. Navigate to the DI-NEON-participants repository in bash.
  3. Type: git status.

The commands that you type into bash should look like the code below:

# Change directory
# The directory containing the git repo that you wish to work in.
$ cd ~/Documents/GitHub/neon-data-repository-2016

# check the status of the repo
$ git status

Output:

On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

Untracked files:
 (use "git add <file>..." to include in what will be committed)

_posts/ExampleFile.md

Let's make sense of the output of the git status command.

  • On branch master: This tells us that we are on the master branch of the repo. Don't worry too much about branches just yet. We will work on the master branch throughout the Data Institute.
  • Changes not staged for commit: This lists any file(s) that is/are currently being tracked by Git but have new changes that need to be added for Git to track.
  • Untracked file: These are all new files that have never been added to or tracked by Git.

Use git status anytime to view any untracked changes that have occurred, what is being tracked and what is not currently being tracked.

Add a File - git add

Next, let's add the Markdown file containing our bio and short project summary using the command git add FileName.md. Replace FileName.md with the name of your markdown file.

# add a file, so that changes are tracked
$ git add ExampleBioFile.md

# check status again
$ git status

On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

	new file:  _posts/ExampleBioFile.md

Understand the output:

  • Changes to be committed: This lists the new files or files with changes that have been added to the Git tracking system but need to be committed as actual changes in the git repository history.
**Data Tip:** If you want to delete a file from your repo, you can do so using `git rm file-name-here.fileExtension`. If you delete a file in the finder (Mac) or Windows Explorer, you will still have to use `git add` at the command line to tell git that a file has been removed from the repo, and to track that "change".

Commit Changes - git commit

When we add a file in the command line, we are telling Git to recognize that a change has occurred. The file moves to a "staging" area where Git recognizes a change has happened but the change has not yet been formally documented. When we want to permanently document those changes, we commit the change. A single commit will work for all files that are currently added to and in the Git staging area (anything in green when we check the status).

Commit Messages

When we commit a change to the Git version control system, we need to add a commit message. This message describes the changes made in the commit. This commit message is helpful to us when we review commit history to see what has changed over time and when those changes occurred. Be sure that your message covers the change.

**Data Tip:** It is good practice to keep commit messages to fewer than 50 characters.
# commit changes with message
$ git commit -m 鈥渘ew example file for demonstration鈥�

[master e3cd622] new example file for demonstration
 1 file changed, 56 insertions(+), 4 deletions(-)
 create mode 100644 _posts/ExampleFile.md

Understand the output: Each commit will look slightly different but the important parts include:

  • master xxxxxxx this is the unique identifier for this set of changes or this commit. You will always be able to track this specific commit (this specific set of changes) using this identifier.
  • _ file change, _ insertions(+), _ deletion (-) this tells us how many files have changed and the number of type of changes made to the files including: insertions, and deletions.
**Data Tip:** It is a good idea to use `git status` frequently as you are working with Git in the shell. This allows you to keep track of change that you've made and what Git is actually tracking.

Why Add, then Commit?

Graphic showing the workflow of using the git add and git commit command. You can think of Git as taking snapshots of changes over the
life of a project. Git add specifies what will go in a snapshot, and git commit then actually takes the snapshot and makes a permanent record of it.
You can think of Git as taking snapshots of changes over the life of a project. git add specifies what will go in a snapshot (putting things in the staging area), and git commit then actually takes the snapshot and makes a permanent record of it (as a commit). Image and caption source:

To understand what is going on with git add and git commit it is important to understand that Git has a staging area that we add items to with git add. Changes are not actually documented and permanently tracked until we commit them. This allows us to commit specific groups of files at the same time if we wish. For instance, we may decide to add and commit all R scripts together. And Markdown files in another, separate commit.

Transfer Changes (Commits) from a Local Repo to a GitHub Repo - git push

When we are done editing our files and have committed the changes locally, we are ready to transfer or sync these changes to our forked repo on github.com. To do this we need to push our changes from the local Git version control to the remote GitHub repo.

To sync local changes with github.com, we can do the following:

  1. Check the status of our repo using git status. Are all of the changes added and committed to the repo?
  2. Use git push origin master. origin tells Git to push the files to the originating repo which in this case - is our fork on github.com which we originally cloned to our local computer. master is the repo branch that you are currently working on.
**Data Tip:** Note about branches in Git: We won't cover branches in these tutorials, however, a Git repo can consist of many branches. You can think about a branch, like an additional copy of a repo where you can work on changes and updates.

Let's push the changes that we made to the local version of our Git repo to our fork, in our github.com account.

# check the repo status
$ git status

On branch master
Your branch is ahead of 'origin/master' by 1 commit.
  (use "git push" to publish your local commits)

# transfer committed changes to the forked repo
git push origin master

Counting objects: 1, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (6/6), 1.51 KiB | 0 bytes/s, done.
Total 6 (delta 4), reused 0 (delta 0)
To https://github.com/mjones01/DI-NEON-participants.git
   5022aca..e3cd622  master -> master

NOTE: You may be asked for your username and password! This is your github.com username and password.

Understand the output:

  • Pay attention to the repository URL - the "origin" is the repository that the commit was pushed to, here https://github.com/mjones01/DI-NEON-participants.git. Note that because this repo is a fork, your URL will have your GitHub username in it instead of "mjones01".
**Data Tip:** You can use Git and connect to GitHub directly in the RStudio interface. If interested, read .

View Commits in GitHub

Let鈥檚 view our recent commit in our forked repo on GitHub.

  1. Go to github.com and navigate to your forked Data Institute repo - DI-NEON-participants.
  2. Click on the commits link at the top of the page.
  3. Look at the commits - do you see your recent commit message that you typed into bash on your computer?
  4. Next, click on the <>CODE link which is ABOVE the commits link in github.
  5. Is the Markdown file that you added and committed locally at the command line on your computer, there in the same directory (participants/pre-institute2-git) that you saved it on your laptop?
Screenshot of a forked NEON Data Instituterepository on github.com displaying an example .md file within the repository.
An example .md file located within the participants/2017-RemoteSensing/pre-institute2-git of a Data Institute repo fork. Source: National Ecological Observatory Network (NEON)

Is Your File in the NEON Central Repo Yet?

Next, do the following:

  1. Navigate to the NEON central repo. (The easiest method to do this is to click the link at the top of the page under your repo name).
  2. Look for your file in the same directory. Is your new file there? If not, why?

Remember the structure of our workflow.

We鈥檝e added changes from our local repo on our computer and pushed them to our fork on github.com. But this fork is in our individual user account, not NEONS. This fork is separate from the central repo. Changes to a fork in our github.com account do not automatically transfer to the central repo. We need to sync them! We will learn how to sync these two repos in the next tutorial Git 06: Syncing GitHub Repos with Pull Requests .

Summary Workflow - Committing Changes

On your computer, within your local copy of the Git repo:

  • Create a new markdown file and edit it in your favorite text editor.

On your computer, in shell (at the command line):

  • git status
  • git add FileName
  • git status - make sure everything is added and ready for commit
  • `git commit -m 鈥渕essageHere鈥�
  • git push origin master

On the github.com website:

  • Check to make sure commit is added.
  • Check to see if the file that you added is visible online in your Git repo.

Have questions? No problem. Leave your question in the comment box below. It's likely some of your colleagues have the same question, too! And also likely someone else knows the answer.

Questions?

If you have questions or comments on this content, please contact us.

Contact Us
NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • AG真人百家乐官方网站 Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.