AG真人百家乐官方网站

Skip to main content
NSF NEON, Operated by Battelle

Main navigation

  • AG真人百家乐官方网站 Us
    • Overview
      • Spatial and Temporal Design
      • History
    • Vision and Management
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups (TWGs)
    • FAQ
    • Contact Us
      • Contact NEON Biorepository
      • Field Offices
    • User Accounts
    • Staff
    • Code of Conduct

    AG真人百家乐官方网站 Us

  • Data & Samples
    • Data Portal
      • Spatial Data & Maps
    • Data Themes
      • Biogeochemistry
      • Ecohydrology
      • Land Cover and Processes
      • Organisms, Populations, and Communities
    • Samples & Specimens
      • Discover and Use NEON Samples
        • Sample Types
        • Sample Repositories
        • Megapit and Distributed Initial Characterization Soil Archives
      • Sample Processing
      • Sample Quality
    • Collection Methods
      • Protocols & Standardized Methods
      • Airborne Remote Sensing
        • Flight Box Design
        • Flight Schedules and Coverage
        • Daily Flight Reports
          • AOP Flight Report Sign Up
        • Camera
        • Imaging Spectrometer
        • Lidar
      • Automated Instruments
        • Site Level Sampling Design
        • Sensor Collection Frequency
        • Instrumented Collection Types
          • Meteorology
          • Phenocams
          • Soil Sensors
          • Ground Water
          • Surface Water
      • Observational Sampling
        • Site Level Sampling Design
        • Sampling Schedules
        • Observation Types
          • Aquatic Organisms
            • Aquatic Microbes
            • Fish
            • Macroinvertebrates & Zooplankton
            • Periphyton, Phytoplankton, and Aquatic Plants
          • Terrestrial Organisms
            • Birds
            • Ground Beetles
            • Mosquitoes
            • Small Mammals
            • Soil Microbes
            • Terrestrial Plants
            • Ticks
          • Hydrology & Geomorphology
            • Discharge
            • Geomorphology
          • Biogeochemistry
          • DNA Sequences
          • Pathogens
          • Sediments
          • Soils
            • Soil Descriptions
        • Optimizing the Observational Sampling Designs
    • Data Notifications
    • Data Guidelines and Policies
      • Acknowledging and Citing NEON
      • Publishing Research Outputs
      • Usage Policies
    • Data Management
      • Data Availability
      • Data Formats and Conventions
      • Data Processing
      • Data Quality
      • Data Product Bundles
      • Data Product Revisions and Releases
        • Release 2021
        • Release 2022
        • Release 2023
        • Release 2024
        • Release-2025
      • NEON and Google
      • Externally Hosted Data

    Data & Samples

  • Field Sites
    • AG真人百家乐官方网站 Field Sites and Domains
    • Explore Field Sites

    Field Sites

  • Impact
    • Observatory Blog
    • Case Studies
    • Papers & Publications
    • Newsroom
      • NEON in the News
      • Newsletter Archive
      • Newsletter Sign Up

    Impact

  • Resources
    • Getting Started with NEON Data & Resources
    • Documents and Communication Resources
      • Papers & Publications
      • Outreach Materials
    • Code Hub
      • Code Resources Guidelines
      • Code Resources Submission
    • Learning Hub
      • Science Videos
      • Tutorials
      • Workshops & Courses
      • Teaching Modules
    • Research Support Services
      • Field Site Coordination
      • Letters of Support
      • Mobile Deployment Platforms
      • Permits and Permissions
      • AOP Flight Campaigns
      • Research Support FAQs
      • Research Support Projects
    • Funding Opportunities

    Resources

  • Get Involved
    • Advisory Groups
      • Science, Technology & Education Advisory Committee
      • Technical Working Groups
    • Upcoming Events
    • NEON Ambassador Program
      • Exploring NEON-Derived Data Products Workshop Series
    • Research and Collaborations
      • Environmental Data Science Innovation and Inclusion Lab
      • Collaboration with DOE BER User Facilities and Programs
      • EFI-NEON Ecological Forecasting Challenge
      • NEON Great Lakes User Group
      • NEON Science Summit
      • NCAR-NEON-Community Collaborations
        • NCAR-NEON Community Steering Committee
    • Community Engagement
      • How Community Feedback Impacts NEON Operations
    • Science Seminars and Data Skills Webinars
      • Past Years
    • Work Opportunities
      • Careers
      • Seasonal Fieldwork
      • Internships
        • Intern Alumni
    • Partners

    Get Involved

  • My Account
  • Search

Search

Learning Hub

  • Science Videos
  • Tutorials
  • Workshops & Courses
  • Teaching Modules

Breadcrumb

  1. Resources
  2. Learning Hub
  3. Tutorials
  4. Document & Publish Your Workflow: Jupyter Notebooks

Tutorial

Document & Publish Your Workflow: Jupyter Notebooks

Authors: Megan A. Jones

Last Updated: Apr 7, 2021

In this tutorial we learn how to effectively and efficiently document and publish our workflows online.

Learning Objectives

At the end of this activity, you will be able to:

  • Explain why documenting and publishing one's code is important.
  • Describe two tools that enable ease of publishing code & output: Jupyter Notebooks with the Python kernel.

Documentation Is Important

As we read in the Reproducible Science overview, the four facets of reproducible science are:

  • Documentation
  • Organization
  • Automation and
  • Dissemination.

This week we will learn about the Jupyter Notebook as a tool to document and publish (disseminate) your code and code output.

Jupyter Notebook

鈥淭he Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more." -- .

We use markdown syntax in Notebook documents to document workflows and to share data processing, analysis and visualization outputs. We can also use it to create documents that combine code in your language of choice, output and text.

The Jupyter Notebooks grew out of iPython. Jupyter is a close acronym meaning Julia, Python, and R, which were the first languages outside Python that the Jupyter application was designed for. Jupyter Notebooks now supports over 40 coding languages. You may still find some references to iPython in materials related to Jupyter Notebooks. This series will focus on using Jupyter Notebooks with Python, but the information presented can apply to other languages as well.

The Jupyter Notebooks application is a browser-based application. Therefore, you need an updated browser (the Jupyter programmers recommend Mozilla Firefox or Google Chrome, but not Microsoft Explorer). When installed on your computer, you can always access the app even without internet access. You can also use Jupyter installed on a remote server. For example, Jupyter runs a .

Why Jupyter Notebooks?

There are many advantages to using Jupyter Notebooks in your work:

  • Human readable syntax.
  • Simple syntax - it can be learned quickly.
  • All components of your work are clearly documented. You don't have to remember what steps, assumptions, tests were used.
  • You can easily extend or refine analyses by modifying existing or adding new code blocks.
  • Analysis results can be disseminated in various formats including HTML, PDF, slideshows and more.
  • Code and data can be shared with a colleague to replicate the workflow.

Explore Examples of Notebooks

Before we jump into how to work with notebooks, check out a few shared notebooks. As you look at these different notebooks, what aspects of the layout do you like, what don't you like? Is there a place in your current workflow that these notebooks would be useful?

  • . Not only is this a great collection of example notebooks, but also it is a valuable resource to learn other skills associated with using Python and Jupyter Notebooks.

In the next tutorial, Introduction to using Jupyter Notebooks, we will learn more about working with Jupyter Notebooks.

Questions?

If you have questions or comments on this content, please contact us.

Contact Us
NSF NEON, Operated by Battelle

Follow Us:

Join Our Newsletter

Get updates on events, opportunities, and how NEON is being used today.

Subscribe Now

Footer

  • AG真人百家乐官方网站 Us
  • Newsroom
  • Contact Us
  • Terms & Conditions
  • Careers
  • Code of Conduct

Copyright © Battelle, 2025

The National Ecological Observatory Network is a major facility fully funded by the U.S. National Science Foundation.

Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the U.S. National Science Foundation.